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During this work we developed a benchmarking flow for subtle elements propagation through standard machine learning
application. We started from the Stable Diffusion image generation models, one of the most active and innovative tools for
artistic creation. While we focus on sentiment coherence by measuring the way image generation and image captioning
models relate to this information. The benchmarking system incorporates a custom model that analyzes textual input (using
Recurrent Neural Networks) providing text classification for the six primary emotional states: joy, sadness, love, anger, fear,
and surprise. The classified emotion is used to construct a semantically rich textual prompt, which conditions the generative
model to produce imagery aligned with the affective context of the input. The resulting visual outputs aim to faithfully
encapsulate the emotional nuances conveyed in the source text. While working on-premises, we also compared the results
with LLM (Large Language Model) to better grasp the capabilities of diffusion models in image generation. Then the
produced image is fed through an image captioner model (Efficient Net BO) that once again produces a text caption that is
analyzed through the sentiment analysis network. This approach shows that sentiments are hard to grasp by modern
machine learning models providing a coherence score of 21%, the rest of the results being, most likely provided by model
hallucinations. This approach demonstrates potential for a flexible application that can be used in many fields, providing
feedback towards the model coherence (as a benchmark tool) for reducing hallucinations thus allowing model applications
in fields such as digital art creation, art-based therapeutic interventions, affective computing, and the design of emotionally

responsive human-computer interfaces.
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1. Introduction

Newer integrated techniques [1] allow for the
extraction of molecular level information it relays upon
standard image analysis. Such techniques are often
employed for art elements with respect to their authors,
schools and other specific, physical characteristics
extracted using all sorts of imaging techniques [1-4].
While these techniques are focused upon the substrate or
the physical content of the artwork, one often less
considered aspect is related to the message that it transmits
as it’s more subjective than quantitative or qualitative
methods.

In order to capture subjective elements, the newest
discoveries in Generative Artificial Intelligence (GenAl)
[5, 6] techniques can provide a valuable, automated tool
for such methods with a wide variety of parameters. This
approach can be extended for other topics by inserting the
topic of interest within the training flow. Our approach
allows for the interpretation applied through machine
learning algorithms allowing for digital access to
information through technological advances [7]. For
synthetic data generation we apply specially trained
models like [8, 9].

While the traditional approach uses Generative
Adversarial Networks (GAN’s) initially proposed in 2014
[10] by the means of unsupervised learning training
techniques its main purpose was to distinguish fake images
from real ones [11] while the Least Squares approach for
such algorithms provide reasonable results [12] they were
limited in terms of interpretability and often provide
inaccurate results from processes known under the name
hallucinations. Within the recent years, their applications
were limited to image reconstruction [13,14] and text
generation [15] thus enabling multimodal analysis [16,17]
allowing for correct context assessment. Such approach
enabled us to construct, using the available Large
Language Model servers a training dataset for our
problem. By integrating such LLM’s greatly reduces the
time needed for training data assessment and calibration.

While GAN’s presented interesting results we
obtained more accurate models using the Latent Diffusion
Method [18] where the latent space is defined using a
Deep Recurrent Neural Network block.

This research aims to create a stringent benchmarking
framework for assessing the propagation and impact of
subtle affective data within common machine learning
models.
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2. Experimental

The experimental approach towards an image analysis
framework containing of multiple models trained on
different data sets we are estimating the model coherence
after the message has pass through different media types.
The overall data flow starts with two textual components,
a prompt and a hint. The prompt contains the description
for the image to be generated while the hint contains
formal data (e.g. realistic, with humans, 1k) and output

constraints. This information is fed to the generation block
that output a generated image based upon the received
instructions (the generator in Fig. 1). The generated image
is then fed into the captioner model that generates a text
based upon the image seen. The captioner output is then
fed to the classifier (two classifier instances) are available
performing text classification for both the prompt and the
captioner results.
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Fig. 1. Overall components block diagram

The results are then compared and generates a
confusion matrix, the basis for our analysis.

The actual methodology implementation is based
upon modular scripts developed using the Python 3.10
[19] language while the data procession workflow makes
use of state-of-the-art libraries like Scikit-learn version 1.6
[20] for dataset manipulation including tokenization,
Numpy version 2.3.0 [21] for numeric data handling and
array manipulation and Pandas version 2.2.3 [22] for Data
frame construction. The Machine Learning frameworks is
TensorFlow v. [23].

2.1. The generator block

Our approach focuses upon the creation of a latent
space  with its  specific  higher dimensionality
representation [18] implementing a auto-regressive
network that focuses upon the correlation between the
current period with respect to the latent result hat reverses
the entanglement process of the Gaussian noise with the
base image, thus generating a new image based on the
received data. While the high-resolution data requires
extensive processing power, we reduce the image size to a
manageable dimension while, during the output, we

employ the inversion technique [24] from denoising
terminology in order to rescale the image to its original
size.

This pipeline consists of three distinct stages, the text
encoding phase where the user input gets evaluated, the
diffusion component where the specific latent space is
evaluated and the image decoding element.

For the encoder component, the Contrastive Language
Image Preprocessing (CLIP) architecture [25] consists of a
transformer [26] network that is specialized in written
language recognition. For our case we are using cosine
similarity for tensor representation assessment while we
only keep the encoder part as an input condition for the
elements down the pipeline [27].

The second component consists of the diffusion phase
where we employ a U-net architecture [28, 29] that is an
established method for image analysis (also a transformer),
that performs image segmentation. This stage applies a
gaussian blur filter altering the image and, on the decoder,
side reconstructs the image while taking into account the
output of the CLIP stage (the encoder component) thus
leaving us with an augmented image (Fig. 2).
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Fig. 2. The input query text "pop-cartoon cat" is prompted to the La

Generated Image

tent Diffusion model. The convolutional network is used in the

Gaussian denoising process which is regulated by the extracted text embedding of the original input query using a transformer encoder.
The process is regulated by a learning scheduler of 50 steps, after which the autoencoder decoder is used to reconstruct the image is
high resolution (colour online)

Such architecture allows for image generation with
minimal associated computing power. There is still a need
to optimize the computing environment by using the JAX
infrastructure thus minimizing both the computing time
and the required resources.

Once the architecture is settled, we continue to train
our workflow. While our work focuses on sentiment
analysis, we use a publicly available dataset [30]
containing of 393822 entries mapped for 6 classes (joy,
sadness, anger, love, fear and surprise (Fig.3). As this
dataset is unbalanced, the classifier network needs to be
unbiased.

The dataset [30] has punctuation removed and in
lowercase. We will use 30% of the dataset, upon shuftle

for testing (15%) and validation (15%) purposes while
70% of the dataset is for training.

2.1.2. Performance evaluation

The main purpose for this algorithm is to generate
digital images (assets) with high accuracy based upon the
user requirements including tone and words from a prompt
interface while keeping certain aesthetic aspects as
instructed. Sometimes the received instructions from the
prompt provides a more cluttered image but the overall
images are consistent for our case.



Benchmarking flow for testing sentiment coherence for information transfer models assessment 607

Emotion Distribution

140000 1

Entries

o

Sadness

120000 1
100000 A
80000 1
60000 -
40000 1
20000 { I
| 1

Anger Fear Surprise

Emotions

Fig. 3. Dataset record count — the first two classes are more prominent than all other (colour online)

Traditionally such use case involves Large Language
Models like Gemini 2.0 Flash [31] the results for such
systems lack in consistence and interpretability usually
mixing up elements and confusing the user. The LLM
large architecture (autoencoder [32] or transformer based)
provides generic generation capabilities [33] unlike the
proposed diffusion model that focuses on specific images
and text input (prompt) rather than general purpose inputs.

On the other hand, using the U-Net architecture
requires images to have smaller resolution leading to a
reduction in entropy and simply scaling it up leads to
generation of artifacts. In order to overcome this issue, we
are implementing a denoising algorithm [34].

For model performance assessment we are comparing
the model results with the ones provided by an established
Large Language Model [35] where the same prompt was
given to both models. The results are presented in Figs. 8-
11.

2.2. The captioner block

Using standard available tools, the image captioner
block (Fig.4) is responsible for converting images to text
thus enabling us to evaluate the captioned text with respect
to the initial generated image.

For this block we start from the Efficient Net BO [36]
architecture without any frozen layers, thus all layers are
adjusted during the training phase. While the training
phase requires images to be correctly labeled, we will use
the Kaggle Flikr8k Dataset [37]. The dataset was split into
6114 (80%) training images and 1529 (20%) validation.
The training step takes approximatively 2 minutes on
A2000 16 Gb GRAM and the resulted accuracy (with
respect to expert annotations is: 42%).

The model uses a Fully Connected Network
transformer architecture that employs an positional
embedding latent space of dimension 512 with a queue

length (sequence length) of 25 covering the entire token
vector space. The input phase consists of the
EfficientNetBO block while both the encoder and the
decoder use Layer Normalization to mitigate gradient
issues. Both transformer components (the encoder and the
decoder) take advantage of the Multihead Attention with
one head for the encoder part and two heads for the
decoder part.

While the generation of caption text is not exact — and
it should not be exact as the caption is a subjective term —
an similarity of 42% with the expert captioner is
considered to be an adequate one.

50

100

150

200

250

0 50 100 150 200 250

Fig. 4. Image captioned as "a bird is flying through the air”,
image is from the validation dataset for the captioner model [37]
(colour online)
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Fig. 5. An image captioned as "a man riding a bicycle down a
road" by the captioner model. Image is from the Flikr8k Kaggle
Dataset [37] (colour online)

Model: "sequential"

While the model can be improved to provide better
captions for the input images (Fig.5), our aim is to
evaluate the Application for Latent Diffusion Models for
Automated Digital Asset Analysis with a focus on
sentiment assessment sentiment coherence level between
the input phrase sentiment and the output.

2.3. The classifier block

The latent space does not need, at least for our
approach, a very large size and its main purpose is to
encode the user input and provide the reconstruction phase
with accurate context. In order to perform input prompt
analysis, we need Recurrent Neural Network architecture.
In our approach we rely upon the standard Long Short-
Term Memory (LSTM) [38] layers. The overall
architecture is presented in Fig. 6.

The best model training parameters are estimated at
10 learning rate with the Adam [39] optimizer while
using the categorical cross entropy loss function with a

Layer (type) |OutputShape |Param

embedding (None, 1080, 64) 640,000
(Embedding)

Istm (LSTM) (None, 100, 128) 98,816
batch_normalization | (None, 180, 128) 512
(BatchNormalization)

Istm_1 (LSTM) (None, 64) 49,508
dense (Dense) (None, 128) 8,320
dense_1 (Dense) (None, 6) 774

Total params: 2,392,980 (9.13 MB)
Trainable params: 797,574 (3.04 MB)
Non-trainable params: 256 (1.00 KB)

Optimizer params: 1,595,150 (6.09 MB)

Fig. 6. Latent space LSTM deep neural network (colour online)

batch size of 32. The training process uses callbacks for
stopping the training process where no improvement is
recorded or when overfitting is detected. Such events were
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detected at a very small epoch count (only 28) leading
towards a training score of 94.38% while the validation
(the data is not seen the model during training) is of
94.18%. The recorded validation loss value is less than
0.1%.

Confusion Matrix
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Fig. 7. Confusion matrix for the synthetic data generation model
for sentiment analysis (colour online)

The confusion matrix from Fig. 7 clearly shows the
models coherence towards the sentiment correlation.
While the first diagonal shows correctly predicted values
there is a similarity between sadness, anger and fear while
joy is correlated with surprise or love. The interesting miss
result is for surprise where the closest emotion is fear thus
our model understands the human behavior and the
relationships between sentiments.

3. Results

While machine learning models have several
applications in Cultural Heritage [40,41], it often fails to
capture the subjective facts that makes the element more
capturing to the audience. Within this work we are
focusing upon the sentiment coherence transmission
between several AI/DL models. This coherence provides
an interesting benchmark for the involved models [42].

The coherence is evaluated with the sentiment
detection algorithm starting with the caption text going
through the sentiment analysis block and being classified.
Then the same text is fed to the image generation model
(Generator) and the resulting image is the fed to the
captioner becoming once again text. This caption text is
then fed to the sentiment classifier and its class is then
compared with the initial classification. If both classes are
identical then we have a successful coherence test and
when they differ the result is not successful.

There is a special case when the generator model is
providing images containing text or are having clear
hallucination effects (the generate image has no relation

with the input phrase. Such cases (less than 15%) are
discarded from the analysis. Even in this case, interesting
results are obtained.
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Fig. 8. Sentiment coherence input dataset structure (colour
online)

By performing this flow on a reduced, not previously
seen by the model we can evaluate the sentiment
coherence degree within our process. In order to perform
this, we selected, from the validation set, a subset of 135
prompts. The sentiment distribution for these prompts is
presented in Fig. 8.

By taking these prompts and feeding through the
benchmarking process we obtained a second distribution
(presented in Fig. 7) containing the inferred sentiment
values.
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Fig. 9. Coherence evaluation result histogram (colour online)

By analyzing these two figures we determined that the
captioning model provides a biased result towards
negative sentiments like Anger and Sadness. While this
seems to be related to the classifier model, the confusion
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matrix presented in Fig. 9 contradicts this as it provides
more than optimal classification results.
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Fig. 10. Coherence evaluation confusion matrix (colour online)

The confusion matrix from Fig. 7 shows that the
results are accurate only for 21% of the sentiment
coherence test dataset. This subset, presented in Fig. 10,
shows that the most correctly identified sentiment is
Sadness (index 0) encountered in 50% of the cases,
followed by Anger 21% and then by Joy 18%. Other less
significant values occupy the rest of 11% of the correctly
identified sentiment (sentiment coherence hit).

While the model training results provided high level
of confidence for the models within the benchmarking
system, the overall results show that the sentiment
coherence level transferred between text — image — text is
less confident than in the case of directly applied tools like
[38], [41], [43] and [44]. Fig.11 displays the distribution of
correctly predicted sentiments.

Distribution of Correctly Predicted Sentiments

B actual sentiment_code

= = =
™) Iy o
L L L

=
o
L

Frequency

2.0 25 3.0

Fig. 11. Correctly predicted sentiments (0 - Sad, 1- Joy, 2-Love,
3-Anger, 4-Fear, 5-Surprise) (colour online)

4. Conclusion

This work was performed for sustaining the process of
benchmarking machine learning/deep learning
technologies when dealing with subjective information (as
opposite to mathematical concepts usually found in
physicochemical, scientific analysis). We focused upon
one of the most challenging (subtle) aspect related to the
sentiment propagation in machine learning models. Within
this process we interpreted the text to image and image to
text transformer frameworks, starting from the Stable
Diffusion model for image generation (that performed
reasonably on RTX 4090 GPU’s and took a long time for
RTX A2000 and similar with the same amount of GPU
RAM). While all models are implemented locally, tests
were developed using standard cloud available tooling.

For the image captioning an award-winning model
was selected (Efficient Net B0O) trained upon one of the
most important image caption datasets publicly available.

While publicly aware models are available, they were
quite limited in terms of sentiment detection (even with
our large dataset from Kaggle) and we implemented a
specific one.

During the data analysis step, we found that models
were strongly biased towards negative strong sentiments
while a shallow sentiment like surprise were completely
ignored by the machine learning image captioner. This
makes sense because surprise that occurs when we
encounter an unexpected event or information. It can be
positive, negative, or neutral, depending on the situation.
While this sentiment is usually leading to stronger feelings
like joy, fear, or anger it’s possible to mismatch it.

The biggest issue we found that sadness, anger and
joy are usually misplaced by either the captioner or the
generator (Stable Diffusion) model, although locally
trained it still generates a lot of images with its original
training. This process can also identify and provide
accurate assessment for the hallucination process for
machine learning.

The benchmarking process provides a valuable tool
for the assessment of machine learning models focus upon
subtle aspects of the Computer Vision while coherence
within machine learning field is becoming a key factor in
the last years.

Such algorithms provide a basis for the development
of hallucination resilience extending the generative model
for a wider range of applications leading to enhance the
robustness and the confidence level of generative model-
based applications.

Inter-Model Benchmarking: Expanding the
comparison (currently against LLMs) to include other
generative image models (e.g., Midjourney, DALL-E 3) to
derive a broader conclusion regarding the affective
coherence performance across different architectures. A
prospective direction suggests that the workflow is
sufficiently reliable to be integrated as a foundational tool
within a digital art therapy application, thus demonstrating
its potential to function as a digital mirror of the user's
emotional state. An essential conclusion would be that the
benchmarking methodology provides a framework for the
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ethical auditing of generative models, ensuring that they
neither propagate nor amplify harmful stereotypes or
inappropriate content associated with specific emotions.
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