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During this work we developed a benchmarking flow for subtle elements propagation through standard machine learning 
application. We started from the Stable Diffusion image generation models, one of the most active and innovative tools for 
artistic creation. While we focus on sentiment coherence by measuring the way image generation and image captioning 
models relate to this information. The benchmarking system incorporates a custom model that analyzes textual input (using 
Recurrent Neural Networks) providing text classification for the six primary emotional states: joy, sadness, love, anger, fear, 
and surprise. The classified emotion is used to construct a semantically rich textual prompt, which conditions the generative 
model to produce imagery aligned with the affective context of the input. The resulting visual outputs aim to faithfully 
encapsulate the emotional nuances conveyed in the source text. While working on-premises, we also compared the results 
with LLM (Large Language Model) to better grasp the capabilities of diffusion models in image generation. Then the 
produced image is fed through an image captioner model (Efficient Net B0) that once again produces a text caption that is 
analyzed through the sentiment analysis network. This approach shows that sentiments are hard to grasp by modern 
machine learning models providing a coherence score of 21%, the rest of the results being, most likely provided by model 
hallucinations. This approach demonstrates potential for a flexible application that can be used in many fields, providing 
feedback towards the model coherence (as a benchmark tool) for reducing hallucinations thus allowing model applications 
in fields such as digital art creation, art-based therapeutic interventions, affective computing, and the design of emotionally 
responsive human-computer interfaces. 
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1. Introduction  
 
Newer integrated techniques [1] allow for the 

extraction of molecular level information it relays upon 

standard image analysis. Such techniques are often 

employed for art elements with respect to their authors, 

schools and other specific, physical characteristics 

extracted using all sorts of imaging techniques [1-4]. 

While these techniques are focused upon the substrate or 

the physical content of the artwork, one often less 

considered aspect is related to the message that it transmits 

as it’s more subjective than quantitative or qualitative 

methods. 

In order to capture subjective elements, the newest 

discoveries in Generative Artificial Intelligence (GenAI) 

[5, 6] techniques can provide a valuable, automated tool 

for such methods with a wide variety of parameters. This 

approach can be extended for other topics by inserting the 

topic of interest within the training flow. Our approach 

allows for the interpretation applied through machine 

learning algorithms allowing for digital access to 

information through technological advances [7]. For 

synthetic data generation we apply specially trained 

models like [8, 9]. 

 

 

 

 

While the traditional approach uses Generative 

Adversarial Networks (GAN’s) initially proposed in 2014 

[10] by the means of unsupervised learning training 

techniques its main purpose was to distinguish fake images 

from real ones [11] while the Least Squares approach for 

such algorithms provide reasonable results [12] they were 

limited in terms of interpretability and often provide 

inaccurate results from processes known under the name 

hallucinations. Within the recent years, their applications 

were limited to image reconstruction [13,14] and text 

generation [15] thus enabling multimodal analysis [16,17] 

allowing for correct context assessment. Such approach 

enabled us to construct, using the available Large 

Language Model servers a training dataset for our 

problem. By integrating such LLM’s greatly reduces the 

time needed for training data assessment and calibration.  

While GAN’s presented interesting results we 

obtained more accurate models using the Latent Diffusion 

Method [18] where the latent space is defined using a 

Deep Recurrent Neural Network block. 

This research aims to create a stringent benchmarking 

framework for assessing the propagation and impact of 

subtle affective data within common machine learning 

models. 
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2. Experimental 
 
The experimental approach towards an image analysis 

framework containing of multiple models trained on 

different data sets we are estimating the model coherence 

after the message has pass through different media types. 

The overall data flow starts with two textual components, 

a prompt and a hint. The prompt contains the description 

for the image to be generated while the hint contains 

formal data (e.g. realistic, with humans, 1k) and output 

constraints. This information is fed to the generation block 

that output a generated image based upon the received 

instructions (the generator in Fig. 1). The generated image 

is then fed into the captioner model that generates a text 

based upon the image seen. The captioner output is then 

fed to the classifier (two classifier instances) are available 

performing text classification for both the prompt and the 

captioner results. 
 

 

 
 

Fig. 1. Overall components block diagram 
 

The results are then compared and generates a 

confusion matrix, the basis for our analysis.  
The actual methodology implementation is based 

upon modular scripts developed using the Python 3.10 

[19] language while the data procession workflow makes 

use of state-of-the-art libraries like Scikit-learn version 1.6 

[20] for dataset manipulation including tokenization, 

Numpy version 2.3.0 [21] for numeric data handling and 

array manipulation and Pandas version 2.2.3 [22] for Data 

frame construction. The Machine Learning frameworks is 

TensorFlow v. [23]. 
 

2.1. The generator block 
 

Our approach focuses upon the creation of a latent 

space with its specific higher dimensionality 

representation [18] implementing a auto-regressive 

network that focuses upon the correlation between the 

current period with respect to the latent result hat reverses 

the entanglement process of the Gaussian noise with the 

base image, thus generating a new image based on the 

received data. While the high-resolution data requires 

extensive processing power, we reduce the image size to a 

manageable dimension while, during the output, we 

employ the inversion technique [24] from denoising 

terminology in order to rescale the image to its original 

size. 
This pipeline consists of three distinct stages, the text 

encoding phase where the user input gets evaluated, the 

diffusion component where the specific latent space is 

evaluated and the image decoding element. 
For the encoder component, the Contrastive Language 

Image Preprocessing (CLIP) architecture [25] consists of a 

transformer [26] network that is specialized in written 

language recognition. For our case we are using cosine 

similarity for tensor representation assessment while we 

only keep the encoder part as an input condition for the 

elements down the pipeline [27]. 
The second component consists of the diffusion phase 

where we employ a U-net architecture [28, 29] that is an 

established method for image analysis (also a transformer), 

that performs image segmentation. This stage applies a 

gaussian blur filter altering the image and, on the decoder, 

side reconstructs the image while taking into account the 

output of the CLIP stage (the encoder component) thus 

leaving us with an augmented image (Fig. 2). 
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Fig. 2. The input query text "pop-cartoon cat" is prompted to the Latent Diffusion model. The convolutional network is used in the 

Gaussian denoising process which is regulated by the extracted text embedding of the original input query using a transformer encoder. 

The process is regulated by a learning scheduler of 50 steps, after which the autoencoder decoder is used to reconstruct the image is 

high resolution (colour online) 
 

Such architecture allows for image generation with 

minimal associated computing power. There is still a need 

to optimize the computing environment by using the JAX 

infrastructure thus minimizing both the computing time 

and the required resources.  
Once the architecture is settled, we continue to train 

our workflow. While our work focuses on sentiment 

analysis, we use a publicly available dataset [30] 

containing of 393822 entries mapped for 6 classes (joy, 

sadness, anger, love, fear and surprise (Fig.3). As this 

dataset is unbalanced, the classifier network needs to be 

unbiased.  
The dataset [30] has punctuation removed and in 

lowercase. We will use 30% of the dataset, upon shuffle 

for testing (15%) and validation (15%) purposes while 

70% of the dataset is for training.  
 

2.1.2. Performance evaluation 
 

The main purpose for this algorithm is to generate 

digital images (assets) with high accuracy based upon the 

user requirements including tone and words from a prompt 

interface while keeping certain aesthetic aspects as 

instructed. Sometimes the received instructions from the 

prompt provides a more cluttered image but the overall 

images are consistent for our case. 
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Fig. 3. Dataset record count – the first two classes are more prominent than all other (colour online) 
 

Traditionally such use case involves Large Language 

Models like Gemini 2.0 Flash [31] the results for such 

systems lack in consistence and interpretability usually 

mixing up elements and confusing the user. The LLM 

large architecture (autoencoder [32] or transformer based) 

provides generic generation capabilities [33] unlike the 

proposed diffusion model that focuses on specific images 

and text input (prompt) rather than general purpose inputs. 
On the other hand, using the U-Net architecture 

requires images to have smaller resolution leading to a 

reduction in entropy and simply scaling it up leads to 

generation of artifacts. In order to overcome this issue, we 

are implementing a denoising algorithm [34]. 
For model performance assessment we are comparing 

the model results with the ones provided by an established 

Large Language Model [35] where the same prompt was 

given to both models. The results are presented in Figs. 8-

11. 
 

2.2. The captioner block 
 

Using standard available tools, the image captioner 

block (Fig.4) is responsible for converting images to text 

thus enabling us to evaluate the captioned text with respect 

to the initial generated image.  
For this block we start from the Efficient Net B0 [36] 

architecture without any frozen layers, thus all layers are 

adjusted during the training phase. While the training 

phase requires images to be correctly labeled, we will use 

the Kaggle Flikr8k Dataset [37]. The dataset was split into 

6114 (80%) training images and 1529 (20%) validation. 

The training step takes approximatively 2 minutes on 

A2000 16 Gb GRAM and the resulted accuracy (with 

respect to expert annotations is: 42%). 
The model uses a Fully Connected Network 

transformer architecture that employs an positional 

embedding latent space of dimension 512 with a queue 

length (sequence length) of 25 covering the entire token 

vector space. The input phase consists of the 

EfficientNetB0 block while both the encoder and the 

decoder use Layer Normalization to mitigate gradient 

issues. Both transformer components (the encoder and the 

decoder) take advantage of the Multihead Attention with 

one head for the encoder part and two heads for the 

decoder part. 
While the generation of caption text is not exact – and 

it should not be exact as the caption is a subjective term – 

an similarity of 42% with the expert captioner is 

considered to be an adequate one. 
 

 
 

Fig. 4. Image captioned as "a bird is flying through the air", 

image is from the validation dataset for the captioner model [37] 

(colour online) 
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Fig. 5. An image captioned as "a man riding a bicycle down a 

road" by the captioner model. Image is from the Flikr8k Kaggle 

Dataset [37] (colour online) 

 

While the model can be improved to provide better 

captions for the input images (Fig.5), our aim is to 

evaluate the Application for Latent Diffusion Models for 

Automated Digital Asset Analysis with a focus on 

sentiment assessment sentiment coherence level between 

the input phrase sentiment and the output. 

 

2.3. The classifier block 
 

The latent space does not need, at least for our 

approach, a very large size and its main purpose is to 

encode the user input and provide the reconstruction phase 

with accurate context. In order to perform input prompt 

analysis, we need Recurrent Neural Network architecture. 

In our approach we rely upon the standard Long Short-

Term Memory (LSTM) [38] layers. The overall 

architecture is presented in Fig. 6. 

 
 

 

 
 

Fig. 6. Latent space LSTM deep neural network (colour online) 
 

The best model training parameters are estimated at 

10-3 learning rate with the Adam [39] optimizer while 

using the categorical cross entropy loss function with a 

batch size of 32. The training process uses callbacks for 

stopping the training process where no improvement is 

recorded or when overfitting is detected. Such events were 
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detected at a very small epoch count (only 28) leading 

towards a training score of 94.38% while the validation 

(the data is not seen the model during training) is of 

94.18%. The recorded validation loss value is less than 

0.1%. 

 
 

Fig. 7. Confusion matrix for the synthetic data generation model 

for sentiment analysis (colour online) 
 

The confusion matrix from Fig. 7 clearly shows the 

models coherence towards the sentiment correlation. 

While the first diagonal shows correctly predicted values 

there is a similarity between sadness, anger and fear while 

joy is correlated with surprise or love. The interesting miss 

result is for surprise where the closest emotion is fear thus 

our model understands the human behavior and the 

relationships between sentiments. 
 

 

3. Results 
 
While machine learning models have several 

applications in Cultural Heritage [40,41], it often fails to 

capture the subjective facts that makes the element more 

capturing to the audience. Within this work we are 

focusing upon the sentiment coherence transmission 

between several AI/DL models. This coherence provides 

an interesting benchmark for the involved models [42]. 
The coherence is evaluated with the sentiment 

detection algorithm starting with the caption text going 

through the sentiment analysis block and being classified. 

Then the same text is fed to the image generation model 

(Generator) and the resulting image is the fed to the 

captioner becoming once again text. This caption text is 

then fed to the sentiment classifier and its class is then 

compared with the initial classification. If both classes are 

identical then we have a successful coherence test and 

when they differ the result is not successful. 
There is a special case when the generator model is 

providing images containing text or are having clear 

hallucination effects (the generate image has no relation 

with the input phrase. Such cases (less than 15%) are 

discarded from the analysis. Even in this case, interesting 

results are obtained. 
 

 
 

Fig. 8. Sentiment coherence input dataset structure (colour 

online) 
 
By performing this flow on a reduced, not previously 

seen by the model we can evaluate the sentiment 

coherence degree within our process. In order to perform 

this, we selected, from the validation set, a subset of 135 

prompts. The sentiment distribution for these prompts is 

presented in Fig. 8.  
By taking these prompts and feeding through the 

benchmarking process we obtained a second distribution 

(presented in Fig. 7) containing the inferred sentiment 

values. 
 

 
Fig. 9. Coherence evaluation result histogram (colour online) 

 
 
By analyzing these two figures we determined that the 

captioning model provides a biased result towards 

negative sentiments like Anger and Sadness. While this 

seems to be related to the classifier model, the confusion 
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matrix presented in Fig. 9 contradicts this as it provides 

more than optimal classification results.  

 

 
 

Fig. 10. Coherence evaluation confusion matrix (colour online) 
 
 
The confusion matrix from Fig. 7 shows that the 

results are accurate only for 21% of the sentiment 

coherence test dataset. This subset, presented in Fig. 10, 

shows that the most correctly identified sentiment is 

Sadness (index 0) encountered in 50% of the cases, 

followed by Anger 21% and then by Joy 18%. Other less 

significant values occupy the rest of 11% of the correctly 

identified sentiment (sentiment coherence hit). 
While the model training results provided high level 

of confidence for the models within the benchmarking 

system, the overall results show that the sentiment 

coherence level transferred between text – image – text is 

less confident than in the case of directly applied tools like 

[38], [41], [43] and [44]. Fig.11 displays the distribution of 

correctly predicted sentiments. 
 

 
 

Fig. 11. Correctly predicted sentiments (0 - Sad, 1- Joy, 2-Love, 

3-Anger, 4-Fear, 5-Surprise) (colour online) 
 

4. Conclusion 
 
This work was performed for sustaining the process of 

benchmarking machine learning/deep learning 

technologies when dealing with subjective information (as 

opposite to mathematical concepts usually found in 

physicochemical, scientific analysis). We focused upon 

one of the most challenging (subtle) aspect related to the 

sentiment propagation in machine learning models. Within 

this process we interpreted the text to image and image to 

text transformer frameworks, starting from the Stable 

Diffusion model for image generation (that performed 

reasonably on RTX 4090 GPU’s and took a long time for 

RTX A2000 and similar with the same amount of GPU 

RAM). While all models are implemented locally, tests 

were developed using standard cloud available tooling.  
For the image captioning an award-winning model 

was selected (Efficient Net B0) trained upon one of the 

most important image caption datasets publicly available.  
While publicly aware models are available, they were 

quite limited in terms of sentiment detection (even with 

our large dataset from Kaggle) and we implemented a 

specific one. 
During the data analysis step, we found that models 

were strongly biased towards negative strong sentiments 

while a shallow sentiment like surprise were completely 

ignored by the machine learning image captioner. This 

makes sense because surprise that occurs when we 

encounter an unexpected event or information. It can be 

positive, negative, or neutral, depending on the situation. 

While this sentiment is usually leading to stronger feelings 

like joy, fear, or anger it’s possible to mismatch it.  
The biggest issue we found that sadness, anger and 

joy are usually misplaced by either the captioner or the 

generator (Stable Diffusion) model, although locally 

trained it still generates a lot of images with its original 

training. This process can also identify and provide 

accurate assessment for the hallucination process for 

machine learning. 
The benchmarking process provides a valuable tool 

for the assessment of machine learning models focus upon 

subtle aspects of the Computer Vision while coherence 

within machine learning field is becoming a key factor in 

the last years. 

Such algorithms provide a basis for the development 

of hallucination resilience extending the generative model 

for a wider range of applications leading to enhance the 

robustness and the confidence level of generative model-

based applications.  

Inter-Model Benchmarking: Expanding the 

comparison (currently against LLMs) to include other 

generative image models (e.g., Midjourney, DALL-E 3) to 

derive a broader conclusion regarding the affective 

coherence performance across different architectures. A 

prospective direction suggests that the workflow is 

sufficiently reliable to be integrated as a foundational tool 

within a digital art therapy application, thus demonstrating 

its potential to function as a digital mirror of the user's 

emotional state. An essential conclusion would be that the 

benchmarking methodology provides a framework for the 
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ethical auditing of generative models, ensuring that they 

neither propagate nor amplify harmful stereotypes or 

inappropriate content associated with specific emotions. 
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